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Abstract— Cardioid or triplet towed arrays are utilized in
sonar applications to resolve left/right ambiguity by placing a
null on the ambiguous direction. This leaves an uncalibrated
residual signal on the opposite direction from which the desired
signal is arriving. Here the mechanism of cardioid beamforming
is presented and analytical expressions for the calibration of
continuous wave (CW) and linear frequency-modulated (LFM)
signals are derived. The validity of these expressions is verified
using simulated and real data. The same data sets are also
used for comparing the performance between the standard
beamformer and a modified version designed to suppress endfire
singularities. The effect of correlated vs. uncorrelated intra-
triplet noise is assessed using a simulation scenario with a point
target.

I. INTRODUCTION

Towed line arrays suffer from port/starboard ambiguity
[1], [2] which downgrades active sonar performance. This
problem is more evident in the littoral, where strong di-
rectional reverberation can mask potential targets on either
side of the array [3]. Cardioid or triplet towed arrays were
introduced to resolve this problem. They consist of a line of
hydrophone triplets made of three closely-spaced omnidirec-
tional hydrophones. Proper combination of the signals from
these three hydrophones can make each triplet behave like a
single directional hydrophone. Due to the very small distances,
intra-triplet noise is usually highly correlated and thus the con-
ventional delay-and-sum beamformer is not relevant. Cardioid
beamforming, which is used instead, overcomes this problem
by suppressing the signal that arrives from the ambiguous
direction, rather than enhancing the one that arrives from the
desired direction.
The drawback of cardioid beamforming is that it returns uncal-
ibrated signal levels. This renders the comparison between real
and modelled data impossible. Such a comparison is funda-
mental for the implementation of the environmentally adaptive
active sonar concept which was introduced by the NATO
Undersea Research Centre (NURC). The proposed adapta-
tion scheme consists of a through-the-sensor environmental
assessment, performance predictions via modelling and model
validation by means of comparison between real and synthetic

data. Based on the outcome of this comparison, the model
is then used to provide system feedback on how to improve
sonar settings. However, this comparison between modelled
and synthetic data is meaningful only if the beamformed signal
can be calibrated.
Here mathematical expressions are derived for the calibration
of CW and LFM signals. These results are confirmed by
simulated and real data comparisons between line and cardioid
array calibrated measurements. This paper is organized as
follows: section II describes the triplet arrays, section III
presents the general analysis of the cardioid beamformer,
IV presents the calibration factors for the specific cases of
CW and LFM signals, V includes real and synthetic data
calibration examples, VI shows the effects of intra-triplet noise
on cardioid beamforming, and VII summarizes the results of
this work.

II. CARDIOID OR TRIPLET ARRAYS

Cardioid or triplet arrays are towed arrays consisting of a
line of triplets instead of a line of single hydrophones. Each
triplet consists of three closely-spaced omnidirectional hy-
drophones which are evenly mounted on a circle perpendicular
to the array axis. Referenced on the right-handed Cartesian
system (X,Y,Z), Y is the array axis pointing at the towing
direction, the X axis points at starboard broadside and the Z
axis points at the sea surface as shown in Fig. 1. Let K be
the number of triplets in the array and let k = 1, 2, . . . ,K
be the triplet index. Similarly, let j = 1, 2, 3 be the index of
the hydrophones within each triplet. The angular separation
between the equally-spaced triplet sensors is denoted as γ,
where γ = 2

3π.
Due to forces applied on the array during the tow, the array is
often twisted with regard to its original deployment position.
The twist angle of the k-th triplet is denoted as βk and is
defined clockwise with respect to the Z axis. Then the angles
of each sensor with respect to Z can be defined as follows:

φ1k = βk

φ2k = βk + γ
φ3k = βk − γ

(1)
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Fig. 1. Sketch of a triplet array referenced in a right-handed Cartesian system.

According to this notation, the vector vjk defining the position
of the j-th hydrophone within the k-th triplet is

vjk =




r sinφjk

yk

r cos φjk


 (2)

where r is the radius of the pitch circle the hydrophones are
mounted on and yk is the Y coordinate of the k-th triplet. From
the above expression follows that estimation of the array twist
is necessary for correct hydrophone positioning. The twist is
usually measured by roll sensors evenly distributed along the
array.

III. CARDIOID BEAMFORMING

Triplet or cardioid arrays are utilized to resolve the
port/starboard (left/right) ambiguity problem using a beam-
forming algorithm, called cardioid beamforming. The cardioid
beam pattern is derived from the beam pattern of a normal line
array [4] weighted by a cardioid-shaped function that places a
null at the ambiguous side [5]. The current section describes
the time domain derivation of this cardioid beamforming
function. The steering direction is defined as (θ, φ), where
θ is the azimuth angle (clockwise) on the X-Y plane and φ is
the elevation angle (from vertical) on the X-Z plane (see Fig.
1). Consequently, the unit vector u(θ, φ) is defined as

u(θ, φ) =




sin φ sin θ
sinφ cos θ

cos φ


 (3)

The signals received on the triplet phones are related in the
following way:

sjk = sk(t − djk) (4)

where

djk =
〈u(θ, φ) · vjk〉

c
(5)

is the time delay between the triplet phones defined by the
ratio of the projection of vjk on u(θ, φ) to the sound speed

c, where 〈·〉 is the scalar operator, i.e the inner product of the
two vectors given by the following equation

〈u(θ, φ) · vjk〉 = r(sin φjk sin φ sin θ+
yk sinφ cos θ + cos φjk cos φ) (6)

Without loss of generality, it can be assumed that the origin
of the reference system and the centre of the triplet coincide
and yk = 0, so the inner product can be simplified as follows

〈u(θ, φ) · vjk〉 = r(sin φjk sinφ sin θ + cos φjk cos φ) (7)

Cardioid beamforming is implemented by a) shifting the
triplet signals to the centre of the triplet, b) weighting them by
their projection on a desired direction and c) summing them.
The mathematical expression of this algorithm is given by the
following formula:

bk(θ, φ) =
3∑

j=1

sjk(t − djk) 〈u(θ, φ) · vj,k〉 (8)

The main idea of the cardioid beamformer is to suppress
the signal arriving from the ambiguous direction. In this case,
the signals received on the triplet phones are defined as:

sjk = sk(t + djk) (9)

By substituting this expressions for sjk in (8) the beamformer
output on the ambiguous side becomes :

bk(θ, φ) =
3∑

j=1

sk(t) 〈u(θ, φ) · vj,k〉 (10)

or equivalently (see Annex 2)

bk(θ, φ) = sk(t)
3∑

j=1

〈u(θ, φ) · vj,k〉 = 0 (11)

On the other hand, the beamformer output at the steering
direction, in which sjk is given by (4), becomes (see Annex
2):

bk(θ, φ) =
3∑

j=1

sk(t − 2djk) 〈u(θ, φ) · vj,k〉 (12)

This expression is the output of a single triplet cardioid
beamformer in the steering direction of the desired signal.
The calibration factor is the relationship between input s(t)
and output bk(θ, φ) signals, and is derived in the next section.

IV. CARDIOID CALIBRATION

The goal here is to derive an analytical relationship that
relates the input and output signals of the cardioid beamformer.
Initially this derivation is obtained for a CW and then it is
extend to LFM signals.



A. Calibration for CW signals

Let us consider a continuous wave signal of amplitude A
and frequency f

s(t) = A cos(2πft) (13)

By substituting the CW signal in (12) we obtain (see Annex
2)

bk(θ, φ) = A cos(2πft)b1 + A sin(2πft)b2 (14)

where

b1 =
3∑

j=1

cos(4πfdjk) 〈u(θ, φ) · vjk〉 (15)

and

b2 =
3∑

j=1

sin(4πfdjk) 〈u(θ, φ) · vjk〉 (16)

The coefficients b1 and b2 are plotted as a function of the
array roll factor β for different frequency values f . The
coefficient b1 (Fig. 2), demonstrate significant variations with
β, especially at high frequencies. On the other hand, b2 (Fig.
3) is more stable and quasi independent of β at all frequencies
(variations are not visible at this scale). It is important to
observe that the b1 values are negligible with respect to
b2 values.The ratios between b1 and the maximum over β
of b2 are approximately 48dB, 34dB, 28dB and 18dB, for
frequencies from 100Hz to 3000Hz. The relationship between
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Fig. 2. Coefficient b1 plotted for β = [0; 360] and f = [100, 500, 1000,
3000]Hz.

these two coefficients is demonstrated using an example in
which the nulling direction is assumed on the horizontal plane,
i.e. φ = π/2. Then the scalar product becomes:

〈u(θ, π/2) · vjk〉 = r sin φjk sin θ (17)

The substitution in b1 and b2 gives:

b1 =
3∑

j=1

cos(4πfr/c sin φjk sin θ)r sin φjk sin θ (18)

and

b2 =
3∑

j=1

sin(4πfr/c sin φjk sin θ)r sinφjk sin θ (19)
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Fig. 3. Coefficient b2 plotted for β = [0; 360] and f = [100, 500, 1000,
3000] Hz.

As the radius r of the array is 2 to 2.5cm, for frequencies of the
order of a few KHz, the argument of the sinusoidal functions
in b1 and b2 is � 1 and therefore can be approximated by the
first terms of their Taylor series. The resulting expressions are
(see Annex 2)

b1 ≈ −8(πf/c)2(r sin θ)3
∑3

j=1 sin3 φjk

b2 ≈ 6πf(r sin θ)2/c
(20)

Equations 20 suggest that

|b1| ≤ −8(πf/c)2(r sin θ)3 =
4πfr

3c
sin θ|b2| (21)

thus |b1| � |b2| for the frequency regime of interest. This rela-
tionship is also confirmed by figures 2) and 3). By eliminating
the b1 term, the beamformer’s output can be approximated as
follows:

bk(θ, φ) ≈ A sin(2πft)6πf(r sin θ)2/c (22)

which indicates that the input/output coefficient for CW pulses
is

CCW = 6πf(r sin θ)2/c (23)

and therefore the calibration factor is 1/CCW .

B. Calibration for frequency modulated signals

The calibration factor derived for a CW signal can still be
used in the case of a frequency modulated signal provided
that a) the instantaneous frequency is the same for all triplet
hydrophones, and b) there is a process that takes into account
the time dependence of the instantaneous frequency. Here we
examine the validity of these two assumptions for the simple
case of an LFM signal.

For an LFM pulse the frequency change associated with
time delay djk is

fjk = fc − B

2
+

B

2T
(t − djk) (24)

where j and k are the hydrophone and the triplex indexes,
B is the signal bandwidth, T is the signal duration, and fc



is the signal central frequency. The instantaneous frequency
difference between hydrophones of the same triplet is

∆fijk = fik − fjk

= B
2T (djk − dik) (25)

By substituting the expressions for the time delay djk from
(1) and (6) the equation is derived

∆fijk =
B

2T

r

c
sin θ sin(βk ± γ/2) sin(±γ/2) (26)

in which γ = 2
3π, thus the maximum value of instantaneous

frequency difference is

∆fMAX =
B

2T

r

c

√
3

2
(27)

When ∆fMAX � 1, it can be assumed that the instantaneous
frequency between triplet phones is the same, i.e.

B

T
� 4c√

3r
(28)

For LFM signals with pulse duration of a few seconds and
bandwidth of the order of a couple of KHz, this is true and
the calibration formula derived for a CW signal can still be
used. The problem is that the calibration factor is frequency
dependent. For the special case of an LFM signal, it is found
that a single calibration factor that corresponds to the centre
frequency of the pulse provides correct results when used in
conjunction with a matched filter. This is not a surprising
result because the matched filter, by means of integrating the
received energy over the entire signal series, averages out
the overestimation/underestimation of the calibration factor
around the central frequency fc. So, it can be concluded that
1/CLFM may be used for cardioid beamforming calibration
of an LFM signal with central frequency fc, where CLFM is
given by the expression

CLFM = 6πfc(r sin θ)2/c. (29)

This conclusion is verified in the next section using both
synthetic and real data.

V. LFM PULSE CALIBRATION EXAMPLES - SIMULATION

AND REAL DATA.

A. Simulated data calibration

The cardioid beamforming calibration simulation example
presented here is based on a LFM pulse with centre frequency
fc = 1200Hz, bandwidth B = 400Hz, and duration T = 1s.
The scenario assumes a point target at 315 degrees and negli-
gible background noise. The received beamformed time series
is first calibrated using equation 29 and then matched filtered.
The matched filter output is compared with the corresponding
result of a line array with a matched 0 dB gain, i.e. the
maximum value of the matched filter output corresponds to the
amplitude of the signal received. Figure 4 shows the line array
response (red line) and the calibrated cardioid array response
(blue line) as a function of steering angle. As the two beam
patterns are calibrated, the sidelobe levels can be compared

Fig. 4. Comparison of calibrated single line (red) and cardioid (blue)
beampatterns after matched filtering using synthetic data.

Fig. 5. Comparison of calibrated standard (blue) and modified (red)
beampatterns after matched filtering using synthetic data.

directly. The cardioid beamformer has equal or better sidelobe
behavior than the line array beamformer, with the exception of
the regime near endfire where the calibrated cardioid algorithm
demonstrates singularities due to the fact that CLFM = 0 for
θ = (0, π). In practice, calibrated cardioid processing may be
used to about 10 degrees from forward or backward endfire
and then be replaced by line array beamforming.
An alternative way to address this singularity issue is to modify
the cardioid beamformer so that it will have a fixed null at
θ = π/2. The beampatterns obtained with the two cardioid
beamforming algorithms are compared in Fig. 5, where the
blue line corresponds to the standard algorithm and the red
line corresponds to the modified one. The comparison between
the two beampatterns shows that the modified algorithm offers
a reduced left-right suppression for a target at 315 degrees, but



Fig. 6. Matched filter output for single-line array beamforming (no target
present).

Fig. 7. Matched filter output for standard calibrated cardioid beamforming
(no target present).

the endfire singularities are removed.

B. Real data calibration

Calibrated cardioid beamforming was tested also with real
data acquired during the BASE’04 sea trial conducted by the
NATO Undersea Research Centre [3]. In this section we show
the results based a single ping of active sonar data using
cardioid beamforming and matched filtering of an LFM pulse
with centre frequency fc = 1050Hz, bandwidth B = 500Hz
and duration T = 3s. The calibration results are shown in
figures 6-8. The same color scale is used in all images. Figure
6 is the result of line array processing and is symmetric around
180 degrees. Figure 7 shows the results for the standard cali-
brated cardioid algorithm and the known problems at forward

Fig. 8. Matched filter output for modified calibrated cardioid beamforming
(no target present).

and backward endfire can be observed easily. Figure 8 is the
result for the modified cardioid algorithm. The comparison
between line and cardioid processing validates the suggested
LFM calibration process. The comparison between the two
cardioid beamforming algorithms demonstrates the elimination
of endfire singularities in the case of the standard algorithm.
More information regarding the derivation of the modified
calibrated cardioid beamforming and its pros and cons with
respect to the standard algorithm can be found in [5].

VI. THE EFFECT OF INTRA-TRIPLET NOISE

Due to the small intra-triplet distances, the noise between
triplet phones is usually highly correlated. However electric
noise or flow noise due to high towing speed may gen-
erate uncorrelated noise between triplet phones. Intra-triplet
noise correlation, which affects considerably the output of
the cardioid beamformer, is also addressed in [6]. This is
shown in Fig. 9 where the matched filter output of a sim-
ulated point target at broadside is shown for three cases:
cardioid beamforming assuming correlated intra-triplet noise
(red), conventional line array beamforming (blue) and cardioid
beamforming assuming uncorrelated intra-triplet noise (green).
The comparison between cardioid and conventional line array
processing shows that, for the same detection output at the
target location, the noise level after cardioid beamforming
is much lower. However, in the case where the intra-triplet
noise is uncorrelated, the interference level after cardioid
beamforming becomes so high that the target is no longer
detectable, and therefore directional beamforming is no more
relevant.

VII. CONCLUSIONS

Analytical expressions for the calibration of cardioid beam-
forming are derived for CW and LFM signals. The calibration
factor was found to be frequency dependent. In the LFM case,



Fig. 9. Matched filter output results for a simulated point target at
broadside. Three beamforming cases are compared: a) cardioid beamforming
with intra-triplet correlated noise (red), cardioid beamforming with intra-triplet
uncorrelated noise (green), standard line array beamforming (blue).

it was shown that calibration can be approximated using the
pulse central frequency as the matched filter detector, which is
applied after beamforming, averages out the calibration offset
due to frequency mismatch. The validity of the mathematical
expressions was demonstrated using simulated and real data
analysis. A comparison between the standard beamformer and
a modified version designed to suppress endfire singularities is
also shown. The degradation of cardioid beamforming in the
case of uncorrelated intra-triplet noise was also demonstrated
using a simulated scenario with a point target. These results
will be utilized in an active adaptation scheme to provide
system feedback based on real life comparisons between real
and synthetic data. The next step in the analysis is to generalize
the calibration derivation for a broader category of frequency
modulated pulses.
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ANNEX 1: USEFUL TRIGONOMETRIC
EXPRESSIONS

In the derivation of the cardioid beamformer response we
often have to deal with expressions which are sum of three
trigonometric functions with arguments φjk. If we substitute to
φjk the values in (1), where γ = 2

3π, we obtain the following
equivalences which are satisfied ∀β:

sinβ + sin(β + γ) + sin(β − γ) = 0
cos β + cos(β + γ) + cos(β − γ) = 0
sin2(β) + sin2(β + γ) + sin2(β − γ) = 3/2
cos2(β) + cos2(β + γ) + cos2(β − γ) = 3/2

(30)

ANNEX 2: DERIVATION OF RESULTS

Derivation of (11)

bk(θ, φ) =
∑3

j=1 sjk(t − djk) 〈u(θ, φ) · vj,k〉
=

∑3
j=1 sk(t + djk − djk) 〈u(θ, φ) · vj,k〉

=
∑3

j=1 sk(t) 〈u(θ, φ) · vj,k〉
= sk(t)r

[
sinφ sin θ

∑3
j=1 sin φjk+

cos φ
∑3

j=1 cos φjk

]
= 0

(31)
where the second and third equations in Annex 1 are also used.
Derivation of (12)

bk(θ, φ) =
∑3

j=1 sjk(t − djk) 〈u(θ, φ) · vj,k〉
=

∑3
j=1 sk(t − djk − djk) 〈u(θ, φ) · vj,k〉

=
∑3

j=1 sk(t − 2djk) 〈u(θ, φ) · vj,k〉
(32)

Derivation of (14)

bk(θ, φ) =
∑3

j=1 A cos((2πf(t − 2djk))) 〈u(θ, φ) · vj,k〉
= A

∑3
j=1 cos(2πft) cos(4πfdjk) 〈u(θ, φ) · vj,k〉+

A
∑3

j=1 sin(2πft) sin(4πfdjk) 〈u(θ, φ) · vj,k〉
= A cos(2πft)

∑3
j=1 cos(4πfdjk) 〈u(θ, φ) · vj,k〉+

A sin(2πft)
∑3

j=1 sin(4πfdjk) 〈u(θ, φ) · vj,k〉
= A cos(2πft)b1 + A sin(2πft)b2

(33)
Derivation of (20)
By using the truncated Taylor expansion we can approximate
sin and cos with small arguments as:

sin ε ≈ ε
cos ε ≈ 1 − ε2/2 (34)

By substituting the approximations in (18), (19) we obtain:

b1 ≈ ∑3
j=1

(
1 − 1/2

(
4πfr/c sin φjk sin θ

)2)
r sin φjk sin θ

= r sin θ
∑3

j=1 sin φjk − 8(πf/c)2(r sin θ)3
∑3

j=1 sin3 φjk

= −8(πf/c)2(r sin θ)3
∑3

j=1 sin3 φjk

(35)
and

b2 ≈ ∑3
j=1 4πfr/c sin φjk sin θr sin φjk sin θ

= 4πf(r sin θ)2/c
∑3

j=1 sin2 φjk

= 6πf/c(r sin θ)2
(36)
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